The average difference between the values under "Obs." calculated from the rough moment values and plotted as circles in Fig. 1 and those calculated from the electronegativity equation (3) is only half as great as that between "Obs." and "Calcd. (1)," obtained from the electronegativity equation (1). It thus seems worth while to use equation (3) for the construction of a table which may be employed to estimate the approximate amount of ionic character of a bond from the electronegativity difference of the two bonded atoms. In Table IV, the amounts of ionic character calculated from equation (3) are multiplied by 100 to give the percentage of ionic character. The values in the latter part of the table are even more approximate than the others since they are the result of an extrapolation. Although equation (3) gives a reasonable enough value for the ionic character of cesium fluoride, it would give more than 100% ionic character for hypothetical electronegativity differences greater than 3.5 and is obviously not to be applied at the extreme limits of the electronegativity difference, where, in any event, the approximate character of the underlying theory renders meaningless the calculation of a very snnall amount of covalent character or a very small amount of ionic character.

Table IV

Relation of Amount of Iomic Character of a Bond A-B to the Difference in the Electronegativities

	($x_{\mathrm{A}}-x_{\mathrm{B}}$) of the Atoms		\% Ionic
$\left(x_{\mathrm{A}}-x_{\mathrm{B}}\right)$	\% Ionic	$\left(x_{A}-x_{B}\right)$	
0.2	3	1.8	40
. 4	7	2.0	46
. 6	11	2.2	52
. 8	15	2.4	58.5
1.0	19.5	2.6	65
1.2	24	2.8	72
1.4	29	3.0	79.5
1.6	34.5	3.2	87
Summary			

The dipole moment of hydrogen fluoride has been measured in the vapor state.
The moment value, which is numerically identical with the electronegativity difference between hydrogen and fluorine calculated from energy data, shows the hydrogen-fluorine bond to have 43% ionic character.

A new table is constructed for the estimation of the approximate amount of ionic character in a bond from the difference in the electronegativities of the two bonded atoms.
Princeton, N. J. Received October 23, 1945

The Heat Capacities, Heats of Transition, Heats of Fusion and Entropies of Cyclopentane, Methylcyclopentane and Methylcyclohexane ${ }^{1}$

By Donald R. Douslin ${ }^{2}$ and Hugh M. Huffman ${ }^{3}$

The Bureau of Mines has begun recently a research program to obtain precise and accurate values of the thermodynamic constants of hydrocarbons and related compounds. In this paper we present the results of our low temperature investigation of three naphthenes. All of these compounds have been investigated by other workers. Cyclopentane was studied by Jacobs and Parks ${ }^{4}$ from $90^{\circ} \mathrm{K}$. to room temperature and also by Aston, Fink and Schuman ${ }^{5}$ over the temperature range 12 to $291^{\circ} \mathrm{K}$. We have thought it desirable to repeat the measurements because of the importance of the experimental value of the entropy in helping to decide on the configuration of this molecule and also as a further check on the agreement of thermal data from this Laboratory and Penn State. Methylcyclopentane ${ }^{6}$ and methylcyclohexane ${ }^{7}$ were also studied by the Stanford workers from about $90^{\circ} \mathrm{K}$. to room temperature.
(1) Published by permission of the Director of the Bureau of Mines, U. S. Dept. of the Interior. Not copyrighted.
(2) Associate Chemist, Bureau of Mines, Petroleum Experiment Station, Bartlesville, Okla.
(3) Principal Phyaical Chemist, Bureau of Mines, Petroleum Experiment Station, Bartlesville, Oklahoma.
(4) Jacobs and Parks, This Journal, 58, 2354 (1936).
(5) Aston, Fink and Schuman, ibid., 65, 341 (1943).
(6) Hufiman, Parks and Barmore, ibid., 58, 3876 (1931).
(7) Parks and Huffmen. ibid., 52, 4381 (1930).

Description of Materials

The samples of API-NBS hydrocarbons have been made available by the American Petroleum Institute and the National Bureau of Standards through the A. P. I. Research Project 44. The samples were purified at the National Bureau of Standards by A. P. I. Research Project 6 under the supervision of F. D. Rossini, from material supplied by several laboratories.
Cyclopentane, by the A. P. I. Research Project 45 on the "Synthesis and Properties of Hydrocarbons of Low Molecular Weight" at the Ohio State University, under the supervision of Cecil E. Boord.
Methylcyclopentane, by the Houdry Process Corporation, through the courtesy of E. A. Smith.
Methylcyclohezane, by the A. P. I. Research Project 45 at the Ohio State University, and the Barrett Division of the Allied Chemical and Dye Corporation.
In the course of our calorimetric investigation, we have also studied the melting points of these compounds, under equilibrium conditions in the usual manner. The experimental and certain derived data for these compounds are summarized in Table I. Since the measurements were made on the compounds in a sealed calorimeter under their own vapor pressure, the observed temperatures are triple points. In determining the temperatures corresponding to a given fraction in the liquid form, the calorimeter and environment were kept at the same temperature (as indicated by a copper-constantan difference couple) and
the temperature of the calorimeter was observed periodically until there was no significant drift.

Table I
Melting Point Summary
$0^{\circ} \mathrm{C} .=273.16^{\circ} \mathrm{K}$. Cyclopentane; $N_{\mathrm{x}}=0.00227 \Delta T$

$\%$ Melted	$T_{\text {(obs.) }}^{(\text {on. }}$	ΔT	$N_{\text {x }}$	N (calcd.)	T (calcd.), ${ }^{\circ} \mathrm{K}$.
37.2	179.666	0.047	0.000106	0.000039	179.658
59.5	179.678	. 035	. 000079	. 000047	179.678
90.6	179.690	. 023	. 000052	. 000047	179.690
100.0		(.021)			179.692
Pure					179.713
Triple point pure cyclopentane					179.71 ± 0.05
1mpurity in this sample					0.005 ± 0.002
					mole \%

Methylcyclopentane; $N_{\mathbf{x}}=0.0488 \Delta T$					
$\begin{gathered} \% \\ \text { Melted } \end{gathered}$	$\begin{gathered} T \text { (obs.), } \\ \text { oK. } \end{gathered}$	ΔT	N_{2}	$N_{\text {(caled.) }}$	T (caled.), ${ }^{\circ} \mathrm{K}$.
21.5	130.660	0.066	0.00322	0.00069	130.638
51.1	130.689	. 037	. 00182	. 00093	130.689
70.5	130.699	. 027	. 00133	. 00094	130.699
89.9	130.705	. 021	. 00102	. 00092	130.705
100.0		(.019)		. 00093	130.707
Pure					130.726
Triple	oint pure	nethylcy	opentane		130.73 ± 0.05

1 mpurity in this sample
0.73 ± 0.05 $.093=0.00$ mole $\%$
Methylcyclohexane; $N_{\mathbf{x}}=0.0378 \Delta T$

$\begin{gathered} \% \\ \text { Melted } \end{gathered}$	$T \text { (obs.), }$	ΔT	$N_{\text {x }}$	N (caled.)	T (calcd.), ${ }^{\circ} \mathrm{K}$.
9.5	146.552	0.0240	0.000907	0.000086	146.545
28.0	146.56%	. 0106	. 000401	. 000112	146.565
49.2	146.570	. 0060	. 000227	. 000112	146.570
75.7	146.572	. 0039	.000147	. 000111	146.572
94.2	146.57%	. 0032	. 000121	. 000114	146.573
100.0		(.0030)		. 000112	146.573
Pure					146.576
Triple point pure methylcyclohexane					$146.58=0.05$
1mpurity in this sample					0.011 ± 0.002

The temperatures were recorded to 0.0001° and at equilibrium usually showed alternations of only a few 0.0001° from the mean value. The observed temperature was plotted against $1 / F$, where F is the fraction melted, and the curve extrapolated to $1 / F=0$ to obtain the melting point of the pure material. To obtain N_{x}, the mole fraction of impurity corresponding to a given fraction melted, we have used the simplified expression $N_{\mathrm{x}}=$ $K \Delta T^{8}$ since in no case was N_{x} or ΔT large.

A study of Table I shows that in all cases the observed melting point, corresponding to the smallest fraction melted, does not agree with the calculated temperature, which may indicate that Raoult's law is not obeyed over the entire range of liquid-solid ratios. For this reason, there is a certain arbitrariness in the selection of the "true" melting point and the mole per cent. of impurity present in the 100% liquid material. We feel, however, that this uncertainty will have no significant effect on the thermal studies we have made.

The materials were placed in a glass container connected to a high vacuum system and were alternately frozen and melted in vacuo to remove any dissolved gases. They were then distilled
(8) Mair, Glasgow and Rossini, J. Research Natl. Bur. Slandards, 26, 591 (1941).
into the copper calorimeter which was joined to the glass system by means of a Housekeeper seal. When the calorimeter was filled, the small (1.0 mm . O.D.) filling tube was pinched off and immediately closed with soft solder.

Apparatus.-The measurements were made in the apparatus described by Ruehrwein and Huffman, ${ }^{9}$ which was loaned to the Bureau of Mines by the California Institute of Technology. Very briefly, the method is as follows: The material under investigation was contained in a sealed copper calorimeter, which was mounted in the adiabatic calorimetric system. A measured amount of electrical energy was supplied to the calorimeter, and at all times the temperature of the environment was maintained at that of the calorimeter to prevent heat interchange. The initial and final temperatures of the calorimeter were measured by means of a platinum resistance thermometer. The electrical measurements required for the determination of the resistance of the thermometer and for the electrical energy

Table II					
The Molal Heat Capacity$0^{\circ} \mathrm{C} .=273.16^{\circ} \mathrm{K}$					
$T,{ }^{\circ} \mathrm{K}$.	ΔT	$\begin{gathered} \text { Cp } \\ \text { cal./mole } \end{gathered}$		ΔT	$\stackrel{C}{C_{0}} \text { cal./mole }$
Cyclopentane, molecular weight $=70.130$					
Crystals I			Crystals III		
11.88	2.362	0.437	141.39	3.992	21.671
13.84	1.487	. 692	143.07	7.245	21.608
15.63	2.063	. 995	146.04	5.316	21.535
18.60	3.836	1.580	150.31	7.234	21.453
22.18	3.317	2.397	157.53	7.212	21.378
26.16	4.617	3.372	163.83	5.393	21.327
31.23	5.506	4.631	169.17	6.571	21.305
36.77	5.548	5.941	169.22	5.379	21.302
42.06	5.037	7.077	174.58	5. 355	21.320
47.96	6.765	8.205	Liquid		
54.94	7.207	9.370			
55.71	5.574	9.486	185.75	8.458	$2+.023$
61.51	6.027	10.325	189.55	5.21:;	$2+.126$
67.29	5.531	11.064	195.20	11.41%	24.284
72.64	5.176	11.664	197.81	10.367	$2+.376$
78.46	6.466	12.295	205.54	10. 280	24.642
80.70	6.324	12.525	207.54	10.183	2t. 722
85.47	7.545	13.009	217. 60	9.967	25. 181
92.32	6.158	13.655	227.48	9.792	25.652
99.30	7.802	14.265	237.19	9.624	26.126
106.91	7.417	14.922	246.72	9.444	26.667
113.72	6.213	15.548	256.07	9.260	27.246
118.98	4.294	16.054	265.23	9.064	27.903
118.98			274.21	8.889	28.523
Crystals II			283.03	8.724	29.122
125.09	2.270	22.626	291.66	8.543	29.818
125.57	1.744	22.658	300.12	8.388	30.448
128.49	4.524	22.598			
129.99	7.091	22.609			
130.40	2.275	22.398			
134.24	5.420	22.475			
135.30	3.536	22.492			

[^0]| T, ${ }^{\circ} \mathrm{K}$ | Table II (Concluded) | | | d) ΔT | $\underset{\text { cal. } /{ }_{\mathrm{p}}^{\mathrm{mole}}}{ }$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | yclope | ntane, m | ecular | t | 84.156 |
| Crystals | | | Liquid | | |
| 12.80 | 3.262 | 0.807 | $126.58^{\text {a }}$ | 11.135 | 29.871 |
| 15.45 | 1.949 | 1.340 | 136.10 | 6.623 | 29.862 |
| 17.53 | 2.128 | 1.822 | 137.65 | 10.998 | 29.900 |
| 20.92 | 4.622 | 2.732 | 140.03 | 10.934 | 29.903 |
| 25.13 | 3.771 | 3.922 | 144.89 | 10.933 | 29.913 |
| 28.95 | 3.846 | 5.002 | 148.59 | 10.871 | 29.945 |
| 32.81 | 3.880 | 6.052 | 150.90 | 10.800 | 30.012 |
| 37.60 | 5.646 | 7.232 | 155.75 | 10.794 | 30.078 |
| 43.03 | 5.215 | 8.434 | 159.38 | 10.730 | 30.131 |
| 49.18 | 7.075 | 9.633 | 161.64 | 10.763 | 30.163 |
| 55.78 | 6.148 | 10.773 | 170.05 | 10.595 | 30.357 |
| 62.09 | 6.466 | 11.727 | 180.56 | 10.440 | 30.671 |
| 69.22 | 7.787 | 12.676 | 190.94 | 10.311 | 30.955 |
| 76.67 | 7.120 | 13.615 | 201.17 | 10.163 | 31.364 |
| 83.53 | 6.606 | 14.501 | 211.26 | 9.998 | 31.847 |
| 89.52 | 9.044 | 15.188 | 215.77 | 19.788 | 32.058 |
| 89.96 | 6.235 | 15.218 | 221.17 | 9.836 | 32.365 |
| 92.45 | 6.629 | 15.476 | 230.93 | 9.668 | 32.878 |
| 99.14 | 8.390 | 16.221 | 235.23 | 19.137 | 33.168 |
| 100.94 | 10.357 | 16.390 | 241.01 | 10.457 | 33.531 |
| 108.66 | 10.659 | 17.265 | 251.36 | 10.261 | 34.226 |
| 109.05 | 5.867 | 17.292 | 254.04 | 18.476 | 34.425 |
| 114.80 | 5.639 | 17.990 | 261.52 | 10.067 | 34.946 |
| 117.74 | 7.500 | 18.402 | 268.65 | 10.759 | 35.556 |
| 120.32 | 5.401 | 18.822 | 271.50 | 9.873 | 35.695 |
| 123.82 | 6.966 | 19.476 | 279.31 | 10.544 | 36.367 |
| 124.97 | 6.963 | 20.050 | 281.27 | 9.682 | 36.486 |
| 125.57 | 5.095 | 20.156 | 289.74 | 10.338 | 37.171 |
| | | | 291.29 | 10.336 | 37.400 |
| | | | 299.14 | 8.448 | 37.997 |
| | | | 301.52 | 10.152 | 38.162 |
| | | | 307.52 | 8.299 | 38.770 |

Methylcyclohexane, molecular weight $=98.182$

	Crystals;		91.36	6.713	14.859
12.19	2.358	0.780	98.65	7.883	15.739
13.59	1.340	1.020	106.84	8.509	16.782
14.28	2.358	1.158	116.06	9.948	17.932
16.03	3.495	1.547	125.69	9.345	19.102
16.69	2.405	1.689	135.63	10.561	20.339
19.92	4.243	2.492	137.39	5.221	20.543
20.02	4.208	2.516	142.51	5.037	21.378
23.96	3.652	3.540		Liquid	
24.21	4.297	3.599			
24.84	9.124	3.769	155.09	10.327	33.690
28.00	4.406	4.576	160.61	10.252	33.970
28.73	4.729	4.753	165.32	10.142	34.161
32.33	5.845	5.620	170.76	10.057	34.521
32.39	4.341	5.639	175.37	9.943	34.778
37.60	4.687	6.780	180.74	9.890	35.032
43.20	6.519	7.859	186.20	11.715	35.347
49.42	5.916	8.949	197.80	11.482	36.010
50.93	7.645	9.189	209.16	11.257	36.681
55.82	6.893	9.958	221.21	12.840	37.520
58.07	6.621	10.302	233.90	12.533	38.474
65.06	7.354	11.339	246.28	12.233	39.469
71.87	6.272	12.257	259.22	13.633	40.554
77.91	5.811	13.070	272.67	13.270	41.750
84.41	7.191	13.963	285.76	12.927	42.936
Supercooled liquid.					

were made on a "White" double potentiometer in conjunction with a high-sensitivity galvanometer and accurately calibrated resistances. The potential was in terms of a bank of six saturated cadmium cells which had been certified by the National Bureau of Standards. Time measurements were made with an electric stop clock, which was frequently compared against a stop watch. The precision of our measurements was in general better than 0.1% and above $30^{\circ} \mathrm{K}$. we believe the accuracy uncertainty should not be greater than 0.2%. The energy measurements were made in terms of the international joule and were converted to calories by dividing by 4.1833 .

The results of the heat capacity measurements are given in Table II. In Table III we have listed the values at integral temperatures as selected from a smooth curve through the experimental data.

Table III
Molal Heat Capacity Values at Integral Temperatures

T, ${ }^{\circ} \mathrm{K}$.	TURES		
	Cyclopentane	Methylcyclopentane	Methylcyclohexane
12	0.45	0.66	0.75
. 13	. 57	. 84	. 91
14	. 72	1.04	1.10
15	88	1.25	1.32
20	1.89	2.48	2.52
25	3.08	3.90	3.81
30	4.33	5.30	5.07
35	5.53	6.60	6.23
40	6.64	7.79	7.26
45	7.66	8.83	8.18
50	8.56	9.78	9.04
55	9.37	10.64	9.81
60	10.11	11.42	10.60
70	11.37	12.78	12.00
80	12.45	14.04	13.36
90	13.44	15.24	14.68
100	14.32	16.30	15.92
110	15.20	$17.37^{\text {a }}$	17.18
120	16.14	18.44^{a}	18.41
130	22.58	$19.51^{\text {a }}$	19.64
140	21.72	29.89	20.86
150	21.56	29.98	33.44
160	21.46	30.14	33.94
170	21.35	30.35	34.46
180	23.88	30.61	35.00
190	24.14	30.92	35.56
200	24.45	31,31	36.14
210	24.84	31.78	36.76
220	25.28	32.29	37.43
230	25.76	32.85	38.17
240	26.28	33.46	38.96
250	26.87	34.13	39.78
260	27.52	34.84	40.62
270	28.22	35.60	41.50
280	28.93	36.40	42.40
290	29.68	37.22	43.33
300	30.44	38.09	44.28

${ }^{a}$ These values taken from extrap. curve after making allowance for premelting.

Cyclopentane undergoes two transitions in the solid state. We have made studies of the temperature at which these transitions occur and the data are given in Table IV.

Table IV

Cyclopentane; Transition Temperature Summary

\% in high temp. form	Lower transition
7.2	122.380
40.0	122.384
80.0	122.387

Transition temp. $=122.39 \pm 0.05 \mathrm{~K}$.

\[

\]

The experimental values for the heats of fusion and heats of transition are given in Tables V and VI.

Table V

Exp.	Fusion Data Summary, ΔH Cal./Mole		
	Cyclopentane	Methyl ${ }^{a}$ cyclopentane	Methylcycloherane
1	145.20	1655.7	1614.2
2	145.88	1656.4	1612.6
Mean	145.54 ± 0.34	$1656.0+, 0.4$	1613.4 ± 0.8

${ }^{a}$ These values have been corrected for the 0.093 mole $\%$ impurity.

Table VI
Transition Data Cyclopentane, ΔH Cal./Mole

Exp.	Lower trans.	Upper trans.
1	1167.3	82.13
2	1165.5^{a}	82.50
Mean	1167.3 ± 1.0	82.32 ± 0.19

${ }^{a}$ This value was obtained from data taken during the determination of the transition temperature. The shield was known to be hot part of the time; consequently, this datum was given no weight in obtaining mean value.

The above data have been used to calculate the entropies of the three compounds at $298.16^{\circ} \mathrm{K}$. and in the liquid form. The results of these calculations are summarized in Table VII.

Discussion

The data obtained in this Laboratory can be compared with those from the Stanford and Penn State Laboratories. However, since the Stanford work is admittedly not of the same order of accuracy, little is to be gained from such a comparison. In the case of cyclopentane, the specific heat measurements from this Laboratory and Penn State have differences ranging from - 1.3 to $+1.7 \%$ except in the region below $30^{\circ} \mathrm{K}$. where the difference reaches a maximum of 5.3%.

Table VII	
Summary of the Molal Entropy Data	
Cyclopentane	
$S_{12^{\circ}}$ (Debye, $\left.6^{\circ} \theta=151.6\right)$	0.153
$\Delta S_{12^{\circ}}-122.39^{\circ}$ (graphical)	16.032
$\Delta S_{122.38^{\circ}}(1167.3 / 122.39)$	9.537
$\Delta S_{122.88^{\circ}-188.09^{\circ}}$ (graphical)	2.723
$\Delta S_{138.00^{\circ}}(82.32 / 138.09)$	0.596
$\Delta S_{138.090^{\circ}-179.71^{\circ}}$ (graphical)	5.642
$\Delta S_{179.71^{\circ}}$ (145.54/179.71)	0.810
$\Delta S_{179.710^{\circ}-298.10^{\circ}}$ (graphical)	13.293
$S_{288,10^{\circ}}$ liquid	$48.786=0.10$
Methylcyclopentane	
$S_{18^{\circ}}$ (Debye, $6^{\circ}, \theta=134.0^{\circ}$)	0.280
$\Delta S_{13^{\circ}}{ }^{130.73^{\circ}}$ (graphical)	19.800
$\Delta S_{130.72^{\circ}}(1656.0 / 130.73)$	12.667
$\Delta S_{130.78^{\circ}-296.16^{\circ}}$ (graphical)	26.473
$S_{288.11^{\circ}}$ liquid	59.220 ± 0.10
Methylcyclohexane	
$S_{12^{\circ}}$ (Debye, $4^{\circ}, \theta=111.5^{\circ}$)	0.254
$\Delta S_{12}{ }^{\circ}-146.58^{\circ}$ (graphical)	21.447
$\Delta S_{146.58^{\circ}}(1613.4 / 146.58)$	11.007
$\Delta S_{166.58-298.10^{\circ}}$ (graphical)	26.546
$S_{298.11^{\circ}}$ liquid	59.254 ± 0.10

The entropy values from all three laboratories are in excellent agreement, with the exception of the Stanford value for cyclopentane. The values of the transition and fusion temperatures of cyclopentane, as determined by us and by Penn State are in excellent agreement.

This would indicate that the source of the discrepancies between the two laboratories is not due to the temperature scale. Furthermore, the continuing presence of these discrepancies may be offered as an argument that steps should be taken to find their source and to eliminate it.

Acknowledgment.-We wish to express our thanks to Dr. J. W. Knowlton, of this Laboratory, who assisted with the measurements and grateful acknowledgment is made to the American Petroleum Institute and the National Bureau of Standards for the loan of the samples measured.

Summary

Heat capacity data on cyclopentane, methylcyclopentane and methylcyclohexane have been given over the range 12 to $300^{\circ} \mathrm{K}$.

Values of the melting points and temperatures of transition have been given.

The heats of fusion and transition were determined.

Entropy values for the liquid state at 298.16° K. were calculated.

Bartlesville, Oklahoma Received September 10, 1945

[^0]: (9) Ruehrwein and Huffman, This Journal, 65, 1620 (1943).

